Geometry: 6.1-6.3 Notes

6.1 Use perpendicular and angle bisectors_

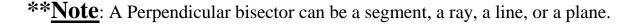
Define Vocabulary:

equidistant -

Perpendicular Bisector Theorem Theorem 6.1

In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overrightarrow{CP} is the \perp bisector of \overrightarrow{AB} , then CA = CB.



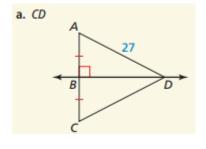
Converse of the Perpendicular Bisector Theorem Theorem 6.2

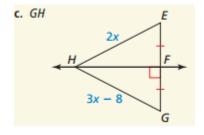
In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

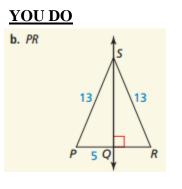
If DA = DB, then point D lies on the \perp bisector of \overline{AB} .

Examples: Find the indicated measure. Explain your reasoning.

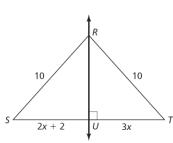
WE DO

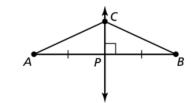






3. SU





NAME

Date:

С

D

Theorem 6.3 Angle Bisector Theorem

If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.

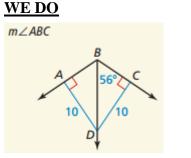
If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then DB = DC.

Theorem 6.4 Converse of the Angle Bisector Theorem

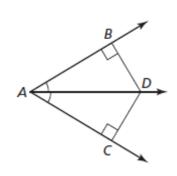
If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.

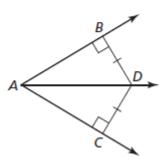
If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and $\overrightarrow{DB} = DC$, then \overrightarrow{AD} bisects $\angle BAC$.

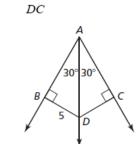
Examples: Find the indicated measure. Explain your reasoning.





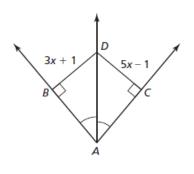






BD

YOU DO



Steps to find Perpendicular Bisector:

- 1. Find the midpoint of the segment
- 2. Find the slope of the segment
- 3. Then find the perpendicular slope.
- 4. Using the perpendicular slope and midpoint, find the equation of the perpendicular bisector.

Examples: Write an equation of a perpendicular bisector of the segment with the given endpoints.

WE DO

YOU DO

D(5, -1) and E(-11, 3)

A(0, -2) and B(2, 2)

Assignment			

Define Vocabulary:

concurrent -

point of concurrency -

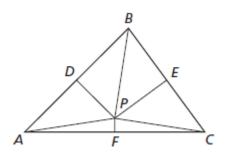
circumcenter -

incenter -

Theorem 6.5 Circumcenter Theorem

The circumcenter of a triangle is equidistant from the vertices of the triangle.

If \overline{PD} , \overline{PE} , and \overline{PF} are perpendicular bisectors, then PA = PB = PC.



The circumcenter P is equidistant from the three vertices, so P is the center of a circle that passes through all three vertices. As shown below, the location of P depends on the type of triangle. The circle with center P is said to be *circumscribed* about the triangle.

Acute triangle P is inside triangle.

Right triangle P is on triangle.

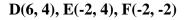
Obtuse triangle P is outside triangle.

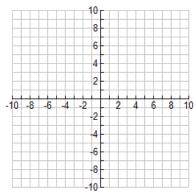
Steps to find the Circumcenter:

- 1. Graph the triangle
- 2. Find the perpendicular bisectors of 2 sides (horizontal and vertical sides if possible).
- 3. Find the midpoint of the remaining side to verify the x-coordinate of the circumcenter.

Examples: Find the coordinates of the circumcenter of the triangle with the given vertices.

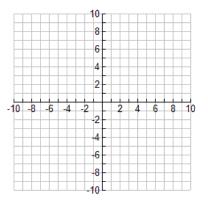
WE DO





YOU DO

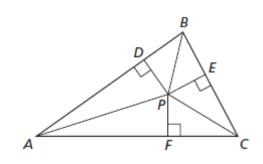
R(0, 0), S(-4, 0), T(-6, 6)



Theorem 6.6 Incenter Theorem

The incenter of a triangle is equidistant from the sides of the triangle.

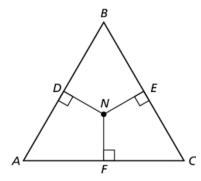
If \overline{AP} , \overline{BP} , and \overline{CP} are angle bisectors of $\triangle ABC$, then PD = PE = PF.



Examples: N is the incenter of the triangle. Use the given information to find the indicated measure.

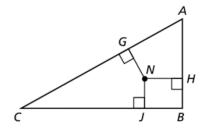
WE DO

ND = 2x - 5NE = -2x + 7Find *NF*.



YOU DO

NG = x - 1NH = 2x - 6Find *NJ*.

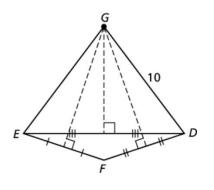


Examples: Find the indicated measure.

WE DO

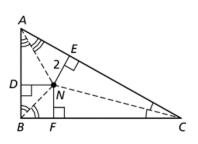
GE

PS

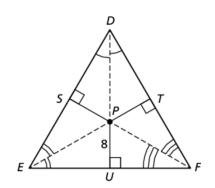


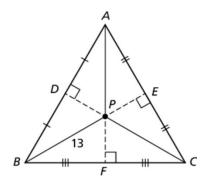
YOU DO

NF



PA





Assignment				
------------	--	--	--	--

Define Vocabulary:

median of a triangle -

centroid -

altitude of a triangle -

orthocenter -

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

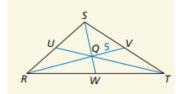
The medians of $\triangle ABC$ meet at point *P*, and

 $AP = \frac{2}{3}AE, BP = \frac{2}{3}BF, \text{ and } CP = \frac{2}{3}CD.$

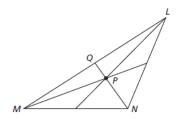
Examples: Using the Centroid of a triangle.

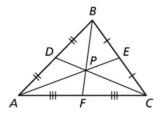
WE DO

In $\triangle RST$, point Q is the centroid, and VQ = 5. Find RQ and RV.



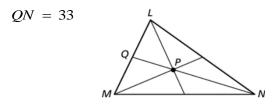
Point P is the centroid. Find *PN* and *QP*. QN = 39



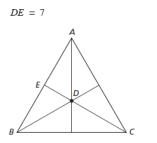


YOU DO

Point P is the centroid. Find PN and QP.



Point D is the centroid. Find CD and CE.



Steps to find the Centroid of the triangle:

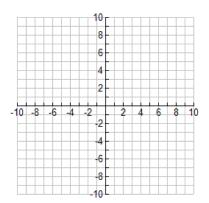
- 1. Graph the triangle
- 2. Find the midpoint of two of the sides
- 3. Then connect the midpoint with the opposite vertex of the triangle.
- 4. Repeat steps 2-3 for the remaining sides
- 5. Point of intersection is the centroid.

Examples: Find the coordinates of the centroid of the triangle with the given vertices.

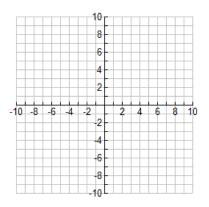
WE DO

YOU DO

A(0, 4), B(-4, -2), and C(7, 1)

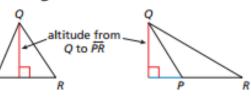


F(2, 5), G(4, 9) and H(6, 1)



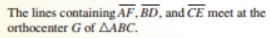
Using the Altitude of a Triangle

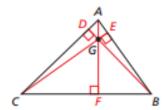
An **altitude of a triangle** is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.



Orthocenter

The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the orthocenter of the triangle.

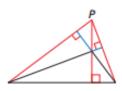




As shown below, the location of the orthocenter P of a triangle depends on the type of triangle.

Acute triangle P is inside triangle.

Right triangle P is on triangle.



Obtuse triangle P is outside triangle.

Steps to find the Orthocenter of the triangle:

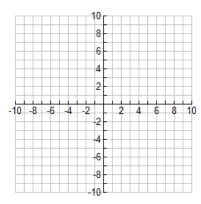
- 1. Graph the triangle.
- 2. Find the given slope and the perpendicular slope of a side
- 3. Draw the altitude of that line by starting at the opposite vertex and using the perpendicular slope
- 4. Repeat steps 2-3 to draw 2nd altitude. The point of intersection is the orthocenter.

Examples: Find the coordinates of the orthocenter of the triangle with the given vertices.

WE DO

YOU DO

J(-3, -4), K(-3, 4), and L(5, 4)



D(3, 4), E(11, 4), and F(9, -2)

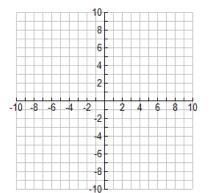
6 4 2

2

-6 -8 2 4 6 8 10

10 -8 -6 -4 -2

D(0, 6), E(-4, -2), and F(4, 6)



Segments, Lines, Rays, and Points in Triangles

	Example	Point of Concurrency	Property	Example
perpendicular bisector	4.	circumcenter	The circumcenter <i>P</i> of a triangle is equidistant from the vertices of the triangle.	A
angle bisector	1	incenter	The incenter <i>I</i> of a triangle is equidistant from the sides of the triangle.	A
median	4	centroid	The centroid <i>R</i> of a triangle is two thirds of the distance from each vertex to the midpoint of the opposite side.	A
altitude		orthocenter	The lines containing the altitudes of a triangle are concurrent at the orthocenter <i>O</i> .	B

Assignment		